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Nonlinear modeling technique for the analysis of DNA chains
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Using a simple computational procedure, we examine DNA chains from different species in order to prove
their nonlinear deterministic structures. This procedure applies a nonlinear modeling technique based upon
guantitative comparison of the neighborhoods from similar DNA subsegments af. e results reveal that
noncoding regions exhibit a deterministic signature at sizes larger than a characteristic dirdgnqpli-
cations to evolutionary categories and recognition of different DNA regions are discussed.

PACS numbs(s): 87.10+e, 05.45:-a, 47.20.Ky, 87.14.Gg

As the human and mouse genome projects are in a phasehat vague definition necessary. According to [Ril], a
of systematic sequencing, computational tools based on comgene is a sequence of genomic DNA or RNA that performs a
cepts used in many science fields have recently played specific function. Performing the function may not require
prominent role. To cite a few examples, we could mentionthe gene to be translated or even transcribed. At present,
gene identification1,2], assignment of tentative functions to three types of genes are recognizéflprotein-coding genes,
particular sequencd8—6], and elucidation of their structure which are transcribed into RNA and subsequently translated
[6—17]. The increasing interest in DNA chains is due to theirinto proteins, (i) RNA-specifying genes, which are only
fundamental importance in living organisms, since all infor-transcribed, andii ) regulatory genes. According to a narrow
mation of the species evolution is contained in these macradefinition, the third category includes only untranscribed se-
molecules. A relevant contribution to the study is due toquences. The protein-coding genes in bacterias differ from
statistical methods, usually employed in physics, to deterthose in eukaryotes in several aspects. The eukaryotic
mine the nature of a series of events, namely Markoviamprotein-coding gene consists of coding and noncoding parts.
approximations[18], correlation functions, and Fourier The noncoding parts are distinguished according to their lo-
transform[6,8,9), etc. However, these methods do not givecation in:flankingsequence@upstream or downstream of the
specific information of how different regions are character-protein coding region andintrons (which are ignored dur-
ized, and also fail to distinguish one given species from aning the processing of the mMRNA molecpulg21]. All se-
other. For instance, Markovian approximations describe @uences that remain in the mature RNA following splicing
genome in terms df-tuple overlapping series of nucleotides are referred to agxons Protein genes in bacterias do not
(where k is the Markovian ordgrand might ignore some contain introns, and may be arranged consecutively to form a
correlations. Fourier transforms only detect periodicity andunit of gene expressiofoperon. A large proportion of eu-
possible correlations, but the information associated withkaryotic DNA is apparently nonfunctional, a large part of
these correlations lacks relevant details about the composihis DNA is accounted for by noncoding parts, the intergenic
tion of DNA chains. On the other hand, scientists in the fieldregions and introns. The genome of eukaryotes is known to
are trying combinations of different methods for the recog-contain various types of repetitive DNA. Repetitive DNA is
nition of coding and noncoding DNA regioltsased on tech- any piece of nucleotide sequence which is repeated several to
nigues such as those mentioned abdweorder to improve many times in the genome. The function of repetitive DNA
the accuracy for prediction of different packages, which acis unknown and some classes of this DNA seem to be non-
tually reach approximately 90% of accuragy9,20. For functional (junk DNA) [22].
these reasons, alternative tools able to give different ideas In this paper, we report results concerning the nonlinear
and estimators concerning the structure of DNA chains repeeterministic structure of nuclear DNA chains obtained by
resent an important contribution in the field. applying a nonlinear modeling\M) technique. We found

DNA consists of two complementary chains, each of thenthat, while coding(exonig regions behave as uncorrelated
being a linear polynucleotide consisting of four nitrogenatedrandom chains, noncoding regions exhibit deterministic sig-
bases: adeninéd), cytosine(C), guanine(G), and thymine natures.
(T). Ais paired with T and G with C in the complementary = The NM method applied here to DNA chains of different
chain. A gene is a sequence of DNA that is essential for apecies has been previously used successfully to distinguish
specific function. Traditionally, a gene was defined as a segsetween chaos and noise in time sefiz3-2§. This is pos-
ment of DNA that codes for a polypeptide chain or specifiessible because it explores, quantitatively, similarity along the
a functional RNA molecule. Recent molecular studies, howsequence at subchain vicinities of equal subchains ofcsize
ever, have altered our perception of genes, making a sométhe embedding dimension
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Departing from an arbitrary data series<,Xs . . . Xy, the 0.80
NM techniqgue works by organizing the series in
d-dimensional delay-register vectors:
0.75
X]_E(Xl,XZ, P ,Xd),
XQE(Xz,X:g s ’Xd+1)! 0.70
()
<B> 065
Xn-d+1=(XN—d+15 - - - XN,
which correspond to a catalog of all possible segmenis of 0.60
consecutive data values. Next, for each vector Bacteriophages
Xp=(Xp:Xps1: - - Xptd—1); (1=p=N-d), one e Viruses
searches for its nearest neighbor Xy 055 - A—Yeasts
= (XH(p) 1 XH(p)+1+ - - - XH(p)+d—1) and then compares how H:“L“da";
close the data values, 4 and ;) q are following these ando
two vectors. 0.50 P 11 16 21

For a DNA sequence, for instance ACCATTGAC. . ,
each data valug; will consist of one of four symbols A, C,

G, or T. In order to compare the closeness of a pair of data F!G- 1. Average errofE) versus the embedding dimensidn
pointsx; and X; We use a Hamming-like metric: for bacteriophages, viruses, yeasts, and humans. For comparison we

show the case of a random sequence.
0 if x=x
1if x#x;. 2 +p(M[1—p(M],p(-), being the probability of occurrences
for the symbol (). Consequently, for such series, the error
Therefore, h(A,C)=h(A,G)=h(A,T)=h(C,G)=h(C,T) in Eq.(4) will not depend on the embedding dimensihrin
=h(G,T)=1 and h(A,A)=h(C,C)=h(G,G)=h(T,T) particular, for a uniform processp(A)=p(C)=p(G)
=0. As a natural extension, the closeness of a pair of vectors p(T)=0.25), (E)=0.75.
X; and X; will be measured by Several DNA sequences corresponding to a classification
of the genome complexity as bacteriophages, eukaryotic vi-
ruses, yeasts, and humans have been analyzed by means of
H(Xi, X)) = g«o h(Xi-+1:%] 410 (3 the NM method. For these species, the average éEphas
been computed as a function of the embedding dimerasion
and the nearest neighbiy(, of a given vectorX,, is ran- These_results_ are reported in Fig. 1. Note that while in the
domly selected among the solutionstdfX,,,X;) such thatit ~numerically simulated random sequen¢g) does not de-
is a minimum forj # p. _pend upord and is kept around 0:75, the curves correspond-
Once the nearest neighbXy, ) has been determined, we ing to DNA chains decrease abis increased from 1 to a
compute the local errog,=h(Xp 4, Xn(p)+d) and from this, characteristic embedding dimensidg, where the average

the overall mean error in the chain: error (E) reaches a minimum valugE ). For d>d; we
did not observe significant variation ¢E) up to d=50,

h(x; ,x;) =

k=d—-1

N-d which corresponds to the largestvalue we considered. All
(E)y= N—d > €p=N—_d(€1+ €t t+en-qg) evolutionary categories were averaged over three different
=t sequences whose GenBank accession num{@gas) are:
1 U24159, 247794, and J02495 for bacteriophages; 286009,
=N=g"*1+d X +a) Fh(Xz1 0, Xu(2)+a) 122858, and J01917 for viruses; X59720, D50617, and
Z47047 for yeasts, and U47924, U07000, and M26434 for
+ X Xa) 1 (4) humans.

This behavior can be interpreted as the existence of an
where, as was already mentioned, the subsétift) corre-  underlying deterministic rule in the structure of nucleotide

sponds to the vectoKy1)= (Xu(1)  XH(1)+1:XH(1)+25 - - - » sequences for a given length scale, which could be hard to
Xu(1)+d—1) Which is the nearest neighbor ofX;  detect with other methods. In fact, even for some DNA
=(X1,Xz, . .. Xq) In the metric defined by Eqs.2)—(3); chains which exhibit a broad-band power spectra similar to
H(2) corresponds to the vector Xy)=(Xn(2), that of white noisgas one of the human sequences consid-
XH(2)+1:XH(2)+21 - - - XH(2)+d—1) Which is the nearest ered herg our approach shows a dependency(Bj on d,
neighbor ofX,=(X,,Xs, ... X4+ 1) in the metric defined by implying a deterministic structure, rather than the apparent
Egs.(2) and(3), etc. random one. An interesting result that turns out by inspection

For uncorrelated random chains, there is no relation beef the (E(d)) curves is that the smallest value #f) cor-
tween any valuex,,q and the vectorX,, and in responds to the human case which is the more complex ge-
that case the error in Eq(4) can be approximated nome.
by p(A)[1-p(A)]+p(C)1-p(C)]+p(G)[1-p(G)] Coding and noncoding regions have been analyzed sepa-
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FIG. 2. Average errofE) versus the embedding dimensidn
for coding(circles, noncoding(diamond$, and completésquares
DNA sequences corresponding to a huni@an=U47924, and a
yeast DNA chainGan=D50617.

cases, the curves corresponding to coding regi@pen
circles behave as random chaifise., (E)~0.75 for alld).

This happens in spite of typical information contained in
these regions which are manifested as a three periodiméy
recall that this periodicity is associated to the nucleotide trip-
lets (codon$ that specify one of 20 aminoacides in coding
regions [3,27,28]. Furthermore, noncoding curve®pen
diamond$ exhibit (E) values lower than those from corre-
sponding complete DNA chains. Note th¢E,;, is still
smaller in the human case. The difference between the com-
plete genome curve and the noncoding one in yeasts, is due
to the amount of coding regions in this species, approxi-
mately 70%, in contrast to the human case whose DNA
chains contain approximately 10% of exdr&9]. Note that
from the above results one can conclude that genes contain-
ing only coding regiongas bacterigswill behave as random
chains.

Although curves reported in Figs. 1 and 2 consider chains
with N=32,768, similar findings are observed for smaller
chains. In order to investigate how these ideas could be used
to recognize regions in DNA chains, we have assigned to
each position of the sequence, #) value corresponding
to a subsequent defined windadive., corresponding to the
following | nucleotides] being the size of the windowand
we stored the value gfE) for d=16 where, as observed in
Fig. 1, all curves saturate to their correspond{figy,;,). In
Fig. 3 we report{E(d=16)) for a complete humafFig.

3(a)] and yeasfFig. 3(b)] DNA sequence. In these figures,
shadowed zones correspond to coding DNA regions as de-
termined by GRAIL softwarg¢30]. We compared these re-

rately in order to determine the origin of the deterministicsults with those obtained using window sizes of 500 and
behavior shown in Fig. 1. Figure 2 shows the comparative2000, and we found that the difference was negligible. On
study of DNA sequences from humara and yeast(b).
Black symbols denote the overall sequence analyzed. In bothf these curves are located in noncoding regitsisar re-
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the other hand, in Fig.(8) one can observe that the minima
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FIG. 3. Average error fod=16, (E(d=16)), versus their position inside the chairfsolid curve for a (a) human(a magnified zone is
illustrated in the top of this figupeand(b) yeast. Shadowed zones denote coding regions as determined by GRAIL software.
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gions, and the wider regions have the deeper minima. Irrange correlations in DNA chains has been a subject of con-
fact, a histogram ofE(d= 16)) values for different intervals troversies6,13—17. From our calculations, one could sup-
(corresponding to a variation of the noncoding zone width pose that these correlations may be due to a deterministic
corroborates thigdata not shown structure of noncoding regions. Information of the DNA
In Fig. 3(b) it is more difficult to distinguish typical structure obtained by the NM technique differs from that
minima, since noncoding regions are much smaller than cotyrovided by standard methods used previously to detect cor-
ing (70% in yeasts. This is mainly due to the consideredyelations; for instance, while determinism is not detected by
window size, since small noncoding parts overlap with €xonghe standard methods, the NM technique applied here fails to
during the statistical analysis, i.e., the curves are governed Byaect typical periodicity at short ranges in exons. Therefore,
the latter regions. From this, it is clear that further work iy qeems that complementarity between different methods is
needed to find a better criterion to define an optimal wmdovvthe best way to characterize DNA structures. In particular
size. We think that combination of this method with otherWe have shown that the NM method provides a powerful tooi
criteria used in the recognition of DNA regions will provide for obtaining information concerning how nucleotides in
the key 1o better app_roaches. ..noncoding regions are organized. Another interesting point
In some DNA chains, from yeasts and humans, and W'H{hat we would like emphasize is that the characteristic em-

calculations of cross correlations and Fourier transforms, wi . . . - .
tried without success to obtain information on the determin-%(addmg dimensiortl; and(Eriy) give different results for

- o each evolutionary categorgee Fig. 1L The latter might be
istic structure of these systems. iny the senS|t_|V|ty of th. elpful to distinguish between evolutionary categories, but
NM method was able to detect this. We emphasize that thig _: .

. . » is point needs to be explored further.
determinism does not concern the typical repetitive DNA
regions[22], but concerns an averaged redundancy of ap- We thank E. Medina D. and H. Naveira F. for valuable
proximate repeats of DNA chains. In fact, the majority of comments about the manuscript. One of (4€8.P) would
(E) values smaller than 0.75 in Fig. 3 corresponded to windike to acknowledge financial support from Universidade da
dows (of size = 1000 where DNA chains do not show re- Corura and Conselléa de Educacio e Ordenacio Univer-
peated regions as reported in GenBank. The origin of longitaria de la Xunta de Galicia.
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