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Nonlinear modeling technique for the analysis of DNA chains
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1Laboratorio de Fı´sica Estadı´stica de Sistemas Desordenados, Centro de Fı´sica, IVIC, Apartado Postal 21827,

Caracas 1020A, Venezuela
2Departamento de Biologı´a Celular y Molecular, Facultad de Ciencias, Universidade da Corun˜a, Campus a Zapateira,

S/N 15071 A Corun˜a, Spain
3Laboratorio de Feno´menos no Lineales, Escuela de Fı´sica, Facultad de Ciencias, Universidad Central de Venezuela,

Apartado Postal 52120, Caracas 1050 A, Venezuela
~Received 6 July 1999!

Using a simple computational procedure, we examine DNA chains from different species in order to prove
their nonlinear deterministic structures. This procedure applies a nonlinear modeling technique based upon
quantitative comparison of the neighborhoods from similar DNA subsegments of sized. Our results reveal that
noncoding regions exhibit a deterministic signature at sizes larger than a characteristic dimensiondc . Appli-
cations to evolutionary categories and recognition of different DNA regions are discussed.

PACS number~s!: 87.10.1e, 05.45.2a, 47.20.Ky, 87.14.Gg
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As the human and mouse genome projects are in a p
of systematic sequencing, computational tools based on
cepts used in many science fields have recently playe
prominent role. To cite a few examples, we could ment
gene identification@1,2#, assignment of tentative functions t
particular sequences@3–6#, and elucidation of their structur
@6–17#. The increasing interest in DNA chains is due to th
fundamental importance in living organisms, since all info
mation of the species evolution is contained in these ma
molecules. A relevant contribution to the study is due
statistical methods, usually employed in physics, to de
mine the nature of a series of events, namely Markov
approximations @18#, correlation functions, and Fourie
transform@6,8,9#, etc. However, these methods do not gi
specific information of how different regions are charact
ized, and also fail to distinguish one given species from
other. For instance, Markovian approximations describ
genome in terms ofk-tuple overlapping series of nucleotide
~where k is the Markovian order! and might ignore some
correlations. Fourier transforms only detect periodicity a
possible correlations, but the information associated w
these correlations lacks relevant details about the comp
tion of DNA chains. On the other hand, scientists in the fi
are trying combinations of different methods for the reco
nition of coding and noncoding DNA regions~based on tech-
niques such as those mentioned above! in order to improve
the accuracy for prediction of different packages, which
tually reach approximately 90% of accuracy@19,20#. For
these reasons, alternative tools able to give different id
and estimators concerning the structure of DNA chains r
resent an important contribution in the field.

DNA consists of two complementary chains, each of th
being a linear polynucleotide consisting of four nitrogena
bases: adenine~A!, cytosine~C!, guanine~G!, and thymine
~T!. A is paired with T and G with C in the complementa
chain. A gene is a sequence of DNA that is essential fo
specific function. Traditionally, a gene was defined as a s
ment of DNA that codes for a polypeptide chain or specifi
a functional RNA molecule. Recent molecular studies, ho
ever, have altered our perception of genes, making a so
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what vague definition necessary. According to Li@21#, a
gene is a sequence of genomic DNA or RNA that perform
specific function. Performing the function may not requ
the gene to be translated or even transcribed. At pres
three types of genes are recognized:~i! protein-coding genes
which are transcribed into RNA and subsequently transla
into proteins, ~ii ! RNA-specifying genes, which are onl
transcribed, and~iii ! regulatory genes. According to a narro
definition, the third category includes only untranscribed
quences. The protein-coding genes in bacterias differ fr
those in eukaryotes in several aspects. The eukary
protein-coding gene consists of coding and noncoding pa
The noncoding parts are distinguished according to their
cation in:flankingsequences~upstream or downstream of th
protein coding region!, and introns ~which are ignored dur-
ing the processing of the mRNA molecule! @21#. All se-
quences that remain in the mature RNA following splici
are referred to asexons. Protein genes in bacterias do n
contain introns, and may be arranged consecutively to for
unit of gene expression~operon!. A large proportion of eu-
karyotic DNA is apparently nonfunctional, a large part
this DNA is accounted for by noncoding parts, the interge
regions and introns. The genome of eukaryotes is known
contain various types of repetitive DNA. Repetitive DNA
any piece of nucleotide sequence which is repeated sever
many times in the genome. The function of repetitive DN
is unknown and some classes of this DNA seem to be n
functional ~junk DNA! @22#.

In this paper, we report results concerning the nonlin
deterministic structure of nuclear DNA chains obtained
applying a nonlinear modeling~NM! technique. We found
that, while coding~exonic! regions behave as uncorrelate
random chains, noncoding regions exhibit deterministic s
natures.

The NM method applied here to DNA chains of differe
species has been previously used successfully to disting
between chaos and noise in time series@23–26#. This is pos-
sible because it explores, quantitatively, similarity along
sequence at subchain vicinities of equal subchains of sizd
~the embedding dimension!.
1812 ©2000 The American Physical Society
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Departing from an arbitrary data seriesx1x2x3 . . . xN , the
NM technique works by organizing the series
d-dimensional delay-register vectors:

X1[~x1 ,x2 , . . . ,xd!,

X2[~x2 ,x3 . . . ,xd11!,

A ~1!

XN2d11[~xN2d11 , . . . ,xN!,

which correspond to a catalog of all possible segmentsd
consecutive data values. Next, for each vec
Xp5(xp ,xp11 , . . . ,xp1d21); (1<p<N2d), one
searches for its nearest neighbor XH(p)
5(xH(p) ,xH(p)11 , . . . ,xH(p)1d21) and then compares how
close the data valuesxp1d and xH(p)1d are following these
two vectors.

For a DNA sequence, for instance ACCATTGACT . . . ,
each data valuexi will consist of one of four symbols A, C
G, or T. In order to compare the closeness of a pair of d
pointsxi andxj we use a Hamming-like metric:

h~xi ,xj !5H 0 if xi5xj

1 if xiÞxj .
~2!

Therefore, h(A,C)5h(A,G)5h(A,T)5h(C,G)5h(C,T)
5h(G,T)51 and h(A,A)5h(C,C)5h(G,G)5h(T,T)
50. As a natural extension, the closeness of a pair of vec
Xi andXj will be measured by

H~Xi ,Xj !5 (
k50

k5d21

h~xi 1k ,xj 1k!, ~3!

and the nearest neighborXH(p) of a given vectorXp is ran-
domly selected among the solutions ofH(Xp ,Xj ) such that it
is a minimum forj Þp.

Once the nearest neighborXH(p) has been determined, w
compute the local error:ep[h(xp1d ,xH(p)1d) and from this,
the overall mean error in the chain:

^E&5
1

N2d (
p51

N2d

ep5
1

N2d
~e11e21•••1eN2d!

5
1

N2d
@h~x11d ,xH(1)1d!1h~x21d ,xH(2)1d!

1•••1h~xN ,xH(N)!#, ~4!

where, as was already mentioned, the subscriptH(1) corre-
sponds to the vectorXH(1)5(xH(1) ,xH(1)11 ,xH(1)12 , . . . ,
xH(1)1d21) which is the nearest neighbor ofX1
5(x1 ,x2 , . . . ,xd) in the metric defined by Eqs.~2!–~3!;
H(2) corresponds to the vector XH(2)5(xH(2) ,
xH(2)11 ,xH(2)12 , . . . ,xH(2)1d21) which is the neares
neighbor ofX25(x2 ,x3 , . . . ,xd11) in the metric defined by
Eqs.~2! and ~3!, etc.

For uncorrelated random chains, there is no relation
tween any value xp1d and the vector Xp , and in
that case the error in Eq.~4! can be approximated
by p(A)[12p(A)] 1p(C)@12p(C)#1p(G)@12p(G)#
r

ta

rs

e-

1p(T)@12p(T)#,p(•), being the probability of occurrence
for the symbol (•). Consequently, for such series, the err
in Eq. ~4! will not depend on the embedding dimensiond. In
particular, for a uniform process (p(A)5p(C)5p(G)
5p(T)50.25), ^E&50.75.

Several DNA sequences corresponding to a classifica
of the genome complexity as bacteriophages, eukaryotic
ruses, yeasts, and humans have been analyzed by mea
the NM method. For these species, the average error^E& has
been computed as a function of the embedding dimensiod.
These results are reported in Fig. 1. Note that while in
numerically simulated random sequence,^E& does not de-
pend upond and is kept around 0.75, the curves correspo
ing to DNA chains decrease asd is increased from 1 to a
characteristic embedding dimensiondc , where the average
error ^E& reaches a minimum valuêEmin&. For d.dc we
did not observe significant variation of^E& up to d550,
which corresponds to the largestd value we considered. All
evolutionary categories were averaged over three diffe
sequences whose GenBank accession numbers~Gan! are:
U24159, Z47794, and J02495 for bacteriophages; Z860
L22858, and J01917 for viruses; X59720, D50617, a
Z47047 for yeasts, and U47924, U07000, and M26434
humans.

This behavior can be interpreted as the existence of
underlying deterministic rule in the structure of nucleoti
sequences for a given length scale, which could be har
detect with other methods. In fact, even for some DN
chains which exhibit a broad-band power spectra similar
that of white noise~as one of the human sequences cons
ered here!, our approach shows a dependency of^E& on d,
implying a deterministic structure, rather than the appar
random one. An interesting result that turns out by inspect
of the ^E(d)& curves is that the smallest value for^E& cor-
responds to the human case which is the more complex
nome.

Coding and noncoding regions have been analyzed s

FIG. 1. Average error̂E& versus the embedding dimensiond
for bacteriophages, viruses, yeasts, and humans. For compariso
show the case of a random sequence.



tic
tiv

bo

in

ip-
g

-

om-
due
xi-

NA

tain-

ins
ler
sed
to

n

s,
de-
-
nd
On
a
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rately in order to determine the origin of the determinis
behavior shown in Fig. 1. Figure 2 shows the compara
study of DNA sequences from humans~a! and yeast~b!.
Black symbols denote the overall sequence analyzed. In

FIG. 2. Average error̂E& versus the embedding dimensiond
for coding~circles!, noncoding~diamonds!, and complete~squares!
DNA sequences corresponding to a human~Gan5U47924!, and a
yeast DNA chain~Gan5D50617!.
e

th

cases, the curves corresponding to coding regions~open
circles! behave as random chains~i.e., ^E&'0.75 for alld).
This happens in spite of typical information contained
these regions which are manifested as a three periodicity@we
recall that this periodicity is associated to the nucleotide tr
lets ~codons! that specify one of 20 aminoacides in codin
regions @3,27,28##. Furthermore, noncoding curves~open
diamonds! exhibit ^E& values lower than those from corre
sponding complete DNA chains. Note that^Emin& is still
smaller in the human case. The difference between the c
plete genome curve and the noncoding one in yeasts, is
to the amount of coding regions in this species, appro
mately 70%, in contrast to the human case whose D
chains contain approximately 10% of exons@29#. Note that
from the above results one can conclude that genes con
ing only coding regions~as bacterias! will behave as random
chains.

Although curves reported in Figs. 1 and 2 consider cha
with N532,768, similar findings are observed for smal
chains. In order to investigate how these ideas could be u
to recognize regions in DNA chains, we have assigned
each position of the sequence, the^E& value corresponding
to a subsequent defined window~i.e., corresponding to the
following l nucleotides,l being the size of the window! and
we stored the value of̂E& for d516 where, as observed i
Fig. 1, all curves saturate to their corresponding^Emin&. In
Fig. 3 we report^E(d516)& for a complete human@Fig.
3~a!# and yeast@Fig. 3~b!# DNA sequence. In these figure
shadowed zones correspond to coding DNA regions as
termined by GRAIL software@30#. We compared these re
sults with those obtained using window sizes of 500 a
2000, and we found that the difference was negligible.
the other hand, in Fig. 3~a! one can observe that the minim
of these curves are located in noncoding regions~clear re-
FIG. 3. Average error ford516, ^E(d516)&, versus their positionx inside the chain~solid curve! for a ~a! human~a magnified zone is
illustrated in the top of this figure!, and~b! yeast. Shadowed zones denote coding regions as determined by GRAIL software.
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PRE 61 1815NONLINEAR MODELING TECHNIQUE FOR THE . . .
gions!, and the wider regions have the deeper minima.
fact, a histogram of̂E(d516)& values for different intervals
~corresponding to a variation of the noncoding zone wid!
corroborates this~data not shown!.

In Fig. 3~b! it is more difficult to distinguish typical
minima, since noncoding regions are much smaller than c
ing ~70%! in yeasts. This is mainly due to the consider
window size, since small noncoding parts overlap with exo
during the statistical analysis, i.e., the curves are governe
the latter regions. From this, it is clear that further work
needed to find a better criterion to define an optimal wind
size. We think that combination of this method with oth
criteria used in the recognition of DNA regions will provid
the key to better approaches.

In some DNA chains, from yeasts and humans, and w
calculations of cross correlations and Fourier transforms,
tried without success to obtain information on the determ
istic structure of these systems. Only the sensitivity of
NM method was able to detect this. We emphasize that
determinism does not concern the typical repetitive DN
regions @22#, but concerns an averaged redundancy of
proximate repeats of DNA chains. In fact, the majority
^E& values smaller than 0.75 in Fig. 3 corresponded to w
dows ~of size 5 1000! where DNA chains do not show re
peated regions as reported in GenBank. The origin of lo
F.
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range correlations in DNA chains has been a subject of c
troversies@6,13–17#. From our calculations, one could sup
pose that these correlations may be due to a determin
structure of noncoding regions. Information of the DN
structure obtained by the NM technique differs from th
provided by standard methods used previously to detect
relations; for instance, while determinism is not detected
the standard methods, the NM technique applied here fail
detect typical periodicity at short ranges in exons. Therefo
it seems that complementarity between different method
the best way to characterize DNA structures. In particu
we have shown that the NM method provides a powerful t
for obtaining information concerning how nucleotides
noncoding regions are organized. Another interesting po
that we would like emphasize is that the characteristic e
bedding dimensiondc and ^Emin& give different results for
each evolutionary category~see Fig. 1!. The latter might be
helpful to distinguish between evolutionary categories,
this point needs to be explored further.
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